Diversity in recommender systems

Andy Valjakka, Wilson Poon, Heng Gui, Toni Mikkola
Source material

Santos et al. 2015: Influence sampling

\[D \subset R \subset S \]

Diversity set is a subset of Result set which is a subset of the Set of every item

- diversity is introduced to a result set in two phases:
 - reduction of search space
 - trade-off between similarity and diversity

- again two phases:
 - candidate filtering
 - diversity computation
Trade-off briefly

diversity problem: “how to retrieve elements similar to the query center, but also diverse enough to generate a more heterogeneous and useful result set”

● first, we have query center dq
● trade-off is a parameter $\lambda \in [0, 1]$
 ○ aka diversity preference
 ○ $\lambda = 0 \rightarrow$ preferably no diversity
 ○ $\lambda = 1 \rightarrow$ preferably only diversity
 ■ “users tend to prefer approx. $\lambda = 0.4$”
● this is bi-criteria optimization
 ○ similarity and diversity are competing
Reduction of search space

- aims at excluding irrelevant elements asap
- previous papers
 - “obtain sets of explanations”
 - “structure results according to item distance”
 - then get items with appropriate distances
- all prior research focuses on diversity computation
 - focus on candidate filtering instead
- proposal: result diversification based on influence
Result Diversification based on Influence - RDI

- goal: exclusion of elements with low contribution
- *separation distance* principle
 - if the distance between two items is less than minimum, they have equivalent information
- minimum distance comes from *influence intensity*
 - if item d_1 is closer to d_2 than query center d_q, then d_2 has more influence on d_1 than d_q
 - this means that d_1 and d_2 are, in essence, the same item and only one of them is needed for the result set
- basis of *BRID (Better Result with Influence Diversification)*
Algorithm in filtering candidate

- **k nearest neighbor (kNN)**
- **Random selection method (Rnd)**
 - randomly select elements with enough relevance.
- **Clustering-based method (CLT)**
 - pick representative element from each cluster
 - kNN filtering!
- **Influence selection (BRID)**
 - select items that each pairs of items will not be similar. So that each elements can carry enough information.(short-distance items can only provide same information)
Brief introduction of diversity computation.

- **Incremental strategy**: greedy, aim at best item each iteration
 - MMR: maximal marginal relevance
 - GMC: greedy marginal contribution
 - MSD: max-sum dispersion

- **Exchanging**: replace current items if iterated ones are better
 - SWAP

- **Meta-heuristic**: greedily build a list, then swap iteratively
 - GMC: greedy marginal contribution
Evaluation of processing time

only diversity computation phase

candidate filtering + diversity computation
Evaluation of quality
Conclusion

● All the algorithms contribute to the diversity computation phase.
● BRID method can directly get a good result. (the processing time of diversity computation is almost zero)
● The quality of results is almost the same (difference less than 2%) no matter what methods are used.
● Based on processing time, the BRID and Rnd are the best in candidate filtering, and MMR and SWAP is the best in the diversity computation.
● Actually, totally random is a pretty good method.
Aspects are expressed in user interests and item descriptions

- e.g. Genres in context of movie recommendations
- Explicit - directly available from input data
- Latent - i.e. implicit, learned from user-item interaction

Constrained PLSA model use explicit aspects, but learns the aspect probabilities to directly optimise their predictive performance -> Latent aspects

Baseline recommender system generate recommender list

xQuAD do reranking with recommender list by using probabilities of aspects
xQuAD re-ranker (explicit Query Aspect Diversification framework)

- intent aware diversification comes from IR field
- re-ranker reorder recommendation list by probabilities of aspects
- inputs: predefined set of k> 0 aspects $A=\{a_1, a_2, ..., a_k\}$ and list of recommendations

1. Compute aspects probability distribution such as $\sum_a p(a|u)=1$
2. Starting with $S=\emptyset$ (re-ranked list), and given score $s(u, i)$ by the baseline recommender, uses λ-value (I guess founded by empirical tests)
 - every iteration: greedily selecting the item i that satisfies
 \[
 i^* = \arg \max_{i \in R_u \setminus S} (1 - \lambda)s(u, i) + \lambda \sum_{a \in A} p(a|u)p(i|u, a) \prod_{j \in S} (1 - p(j|u, a)),
 \]
 - updating $S \leftarrow S \cup \{i^*\}$
Probabilities

item | user probability:

\[p(i|u) = \sum_a p(a|u)p(i|u, a) \]

Estimates of probability (aspect | user) and probability(item | user, aspect)

\[p(a|u) \sim \frac{|\{i \in I_u : a \in A_i\}|}{\sum_{a' \in A} |\{i \in I_u : a' \in A_i\}|}, \quad p(i|u, a) \sim \frac{1_{A_i}(a)s(u, i)}{\sum_{j \in \mathcal{R}} 1_{A_i}(a)s(u, j)} \]
Wasilewski et al 2016 (cont)

- **ExAs-Co0 - explicit aspects co-occurrence estimation method**
 - does not learn from user behaviour. \(p(a \mid u) \) equal weight for all

- **pLSA model (probabilistic latent semantic analysis)**
 - Uses latent aspects as learning technique for machines. Aims to represent some sort of relationship between items in terms of their proximity in the semantic space
 - Assumes \(p(i \mid u, a) \) is independent of \(u \) and learns \(p(a \mid u) \) and \(p(i \mid a) \) by optimisation on the training data

- **C-pLSA - constrained pLSA.**
 - Uses explicit aspects
 - constraint of \(p(i \mid a) = 0 \) when ‘a’ ‘not in \(A_i \)
 - user aspect probabilities learned more accurately and weights can be derived
Wasilewski et al 2016 - Experiment Background

- Precision & Recall
 - Precision is the proportion of top recommendations that are relevant
 - Recall is the proportion of all relevant results included in top recommendations

- NDCG - Normalized Discounted Cumulative Gain
 - Measures the performance of a recommendation system based on the graded relevance of the recommended entities. It varies from 0.0 to 1.0, with 1.0 ideal ranking

- ERR-IA - Expected Reciprocal Rank (Intent Aware), cascade model
 - Expected reciprocal length of time that it takes the user to find a relevant item
 - Top-down search method, user stops at position p. Once the user is satisfied, search is terminated and items below this result are not examined regardless of their position

- MF - Matrix Factorization
 - Characterizes items and users by vectors of factors inferred from item rating patterns
 - High correspondence between both lead to a recommendation
Wasilewski et al 2016 - Results

Movielens: 800,000 ratings used as training set; 200,000 ratings as test

4 algorithms (MF, PLSA, UB, IB) used to generate recommendation candidate lists of 100 items. Re-ranked using the following methods below:

xQuAD_e = ExAs-Co0
xQuAD_c = c-pLSA
xQuAD_p = pLSA

Diversity - ExAs-Co0 gives equal weights thus more items for the re-ranker to work with while ExAs-Co0 focus only on those items that contribute to relevance

Despite the lower capacity in diversity, belief that C-pLSA represents user’s true intents
Wasilewski et al 2016 - Conclusion

- For this paper, results were not very significant between methods
- Using probability as latent aspect modeling for user behaviour
 - important as explicit information is very limited
 - Represent all of user’s interests and avoiding filter bubbles
- There is a growing number of options for studying and tweaking recommender systems

Thank you, Any Questions?