About the Book

In this volume the contributing authors deal with an extensive study of several important inequalities useful in several problems in mathematical analysis, geometry and their applications. Subjects dealt with include: Inequalities of Jensen type and approximation processes, inequalities and equalities for the generalized efficiency function in orthogonality partitioned linear models, reverses of the Schwarz inequality in inner product spaces, new sharp bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, Ulam stability problem for approximately biquadratic mappings and functional inequalities, orthogonality equation on a bounded domain, generalized Hosszu's functional equation, Weyl multipliers and numerical series, stability of homomorphisms in quasi-Banach algebras, inequalities for d-isometric isomorphisms on linear d-normed C*-algebras, rate of growth of polynomials not vanishing inside a disk, new Redheffer type inequalities, inequalities connected with the Hyers' stability theorem, Jensen inequality and Popoviciu's and related functional equations, nonlinear variational inclusion systems, iterative algorithm and convergence analysis, Hilbert-type inequalities with best constant factors, reverse of Hilbert-Hong's inequality, Jordan's inequality and applications.

In addition to these inequalities, applications to certain problems in pure and applied mathematics are considered.
INEQUALITIES AND APPLICATIONS

THEMISTOCLES M. RASSIAS
DORIN ANDRICA
Editors
CONTENTS

Preface .. vii
OCTAVIAN AGRATINI and TUDOR ANDRICA, Inequalities and Approximation Theory .. 1
KA LOK CHU, JARKKO ISOTALO, SIMO PUNTANEN and GEORGE P. H. STYAN, Inequalities and Equalities for the Generalized Efficiency Function in Orthogonally Partitioned Linear Models .. 13
SEVER S. DRAGOMIR, Reverses of the Schwarz Inequality in Inner Product Spaces and Applications .. 71
GE HUA-FENG, New Sharp Bounds for the Bernoulli Numbers and Refinement of Becker-Stark Inequalities .. 103
KIL-WOUNG JUN and HARK-MAHN KIM, Solution of Ulam Stability Problem for Approximately Biquadratic Mappings and Functional Inequalities .. 109
SOON-MO JUNG, Stability of the Orthogonality Equation on a Bounded Domain .. 125
SOON-MO JUNG and YOUNG-HEE KYE, Stability of a Generalized Hosszú’s Functional Equation .. 147
LÁSZLÓ LEINDLER, Equivalence and Embedding Relations Concerning Numerical Series .. 155
CHOONKIL PARK and THEMISTOCLES M. RASSIAS, d-Isometric Isomorphisms on Linear d-Normed C∗-Algebras .. 195
W.M. SHAH and A. LIMAN, Rate of Growth of Polynomials not Vanishing Inside a Disk .. 229
JINJU SUN and LING ZHU, Three New Redheffer-Type Inequalities .. 237
ÁRPÁD SZÁZ, An Instructive Treatment of a Generalization of Hyers’s Stability Theorem .. 245
TIBERIU TRIF, Popoviciu’s and Related Functional Equations: A Survey .. 273
RAM U. VERMA, Generalized (A, η)-Resolvent Operator Methods and Nonlinear Variational Inclusion Systems .. 287
BICHENG YANG, On a Reverse of Hilbert-Hong Inequality .. 301
BICHENG YANG and THEMISTOCLES M. RASSIAS, On Some Character of the Symmetric Kernel in Hilbert-type Integral Operator and Applications .. 309
LING ZHU, Some Improvements and Generalizations of Jordan’s Inequality and Yang Le Inequality .. 319
PREFACE

We wish to mention here three of the most influential books on inequalities:

It is generally acknowledged that the classic book *Inequalities* by G.H. Hardy, J.E. Littlewood and G. Pólya transformed the field of inequalities from a collection of isolated formulas into a systematic discipline. The modern theory of inequalities, as well as the continuing and growing interest in this field, undoubtedly stems from that work.

Richard Bellman said during the Second International Conference on General Inequalities (Oberwolfach, 30th July-5th August 1978), "There are three reasons for the study of inequalities: practical, theoretical, and aesthetic". On the aesthetic aspects he said: "As has been pointed out, beauty is in the eyes of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive."

After the classic book by Hardy, Littlewood and Pólya, the book of D.S. Mitrinović is the next most cited book in the field of inequalities. Mitrinović often used to say: "There are no equalities, even in the human life the inequalities are always present."

In this volume the contributing authors deal with an extensive study of several important inequalities useful in several problems in mathematical analysis, geometry and their applications. Subjects dealt with include: Inequalities of Jensen type and approximation processes, inequalities and equalities for the generalized efficiency function in orthogonality partitioned linear models, reverses of the Schwarz inequality in inner product spaces, new sharp bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, Ulam stability problem for approximately biquadratic mappings and functional inequalities, orthogonality equation on a bounded domain, generalized Hosszú’s functional equation, Weyl multipliers
and numerical series, stability of homomorphisms in quasi-Banach algebras, inequalities for d-isometric isomorphisms on linear d-normed C^*-algebras, rate of growth of polynomials not vanishing inside a disk, new Redheffer-type inequalities, inequalities connected with the Hyers’ stability theorem, Jensen inequality and Popoviciu’s and related functional equations, nonlinear variational inclusion systems, iterative algorithm and convergence analysis, Hilbert-type inequalities with best constant factors, reverse of Hilbert-Hong’s inequality, Jordan’s inequality and applications.

In addition to these inequalities, applications to certain problems in pure and applied mathematics are considered.

It is a pleasure to express our deepest appreciation to all the mathematicians, who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Cluj-University Press.

July 2008

Themistocles M. Rassias
Dorin Andrica

Inequalities and Approximation Theory

OCTAVIAN AGRATINI1* and TUDOR ANDRICA2**

1 Babeș-Bolyai University
Faculty of Mathematics and Computer Science
400084 Cluj-Napoca, Romania

2 Babeș-Bolyai University
Faculty of Mathematics and Computer Science
400084 Cluj-Napoca, Romania

Abstract. The purpose of this paper is twofold. Firstly, we present an equivalence property involving isometric linear functionals. Secondly, by using the contraction principle, we give a method for obtaining the limit of iterates of some classes of linear positive operators.

1. Introduction

In Approximation Theory a tool with rich mathematical content and great potential for applications is given by linear methods of approximation generated by sequences of linear operators, the essential ingredient being that of positivity.

The main objective of this survey paper is to present results which spring from standard inequalities enriching the mentioned research field.

In this respect, the paper is organized in two main sections.

Taking into account that the class of convex functions is characterized by the well-known inequality of Jensen, the following question arises in a natural way: what are the connections between the Jensen’s inequality on $C([a, b])$, the existence of a sequence of approximating and convexity-preserving positive linear polynomial operators which reproduce the affine functions and Bohman-Korovkin’s theorem? The aim of Section 2 is to show that the three above mentioned basic results together with a certain generalization of Jensen’s inequality due to B. Jessen are equivalent. This equivalence property emphasizes the role of convexity and convexity-preserving operators in the approximation of functions by positive linear operators. Once again, the powerful criterion due to T. Popoviciu, H. Bohman and P.P. Korovkin is pointed out. It helps us to decide if a sequence of positive
Inequalities and Equalities for the Generalized Efficiency Function in Orthogonally Partitioned Linear Models

KA LOK CHU\(^1\), JARKKO ISOTALO\(^2\), SIMO PUNTANEN\(^3\), and GEORGE P. H. STYAN\(^4\)

\(^1\) Department of Mathematics, Dawson College, Westmount (Québec), Canada
\(^2\) Institute of Medical Technology, University of Tampere
\(^3\) Department of Mathematics and Statistics, University of Tampere, Finland
\(^4\) Department of Mathematics and Statistics, McGill University, Montréal (Québec), Canada

Abstract. We consider the estimation of regression coefficients in orthogonally partitioned linear models and focus on the Watson efficiency of the ordinary least squares estimator of the full set of the parameters with respect to the best linear unbiased estimator and how this full Watson efficiency relates to the product of the Watson efficiencies of two subsets of the parameters. Building upon our recent paper [19], we introduce a new and apparently very useful generalized efficiency function and show how it is related to the Watson efficiency; several new inequalities and equalities are established.

1. Introduction and mise-en-scène

1.1 Introduction

In this paper we consider the general partitioned linear (or Gauß-Markov) model

\[y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon, \]

or in another notation,

\[\mathcal{M}_{12} := \{ y, X_{12} \beta_{12}, V \} := \{ y, X_1 \beta_1 + X_2 \beta_2, V \}, \]

with

\[E(y) = X_{12} \beta_{12}, \; E(\varepsilon) = 0, \; \text{cov}(y) = \text{cov}(\varepsilon) = V, \]

\(^*\) email: ka.chu@mcgill.ca
\(^**\) email: jarkko.isotalo@uta.fi
\(^***\) email: Simo.Puntanen@uta.fi
\(^1\) email: styan@math.mcgill.ca

AMS 2000 subject classifications. Primary 62R70, Secondary 62Q05, 62N35

[82] Sobel, Marc, Problem 89-7; "Let \(X, Y \) and \(Z \) be random variables. If the correlations \(\rho(X,Y) \) and \(\rho(Y,Z) \) are known, what are the sharp lower and upper bounds for \(\rho(X,Z) \)?". The IMS Bulletin, 18 (1989), 386. (Solutions: Baksalary [5, (1990)], Eilers [31, (1990)], Good [37, (1990)].)

[84] Stanley, Julian C., Wang, Marilyn D., Restrictions on the possible values of \(r_{12} \), given \(r_{13} \) and \(r_{23} \), Educational and Psychological Measurement, 29 (1969), 579-581.

