Matrix trace Wielandt inequalities with statistical applications

Shuangzhe Liua,∗, Changyu Lub, Simo Puntanenc

aFaculty of Information Sciences and Engineering, University of Canberra, Canberra, ACT 2601, Australia
bFinancial Research Center, Shanghai Finance University, Shanghai 201209, China
cDepartment of Mathematics and Statistics, University of Tampere, FI-33014, Finland

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 10 April 2006
Received in revised form 5 November 2007
Accepted 20 October 2008
Available online 1 January 2009

\textbf{Keywords:}
Wielandt inequality
Cauchy–Schwarz inequality
Frucht–Kantorovich inequality
Measure of association
Wishart matrix

\textbf{ABSTRACT}

The vector correlation coefficient and other measures of association play a very important role in statistics and especially in multivariate analysis. In this paper a new measure of association is proposed and its upper bound is presented by using a matrix trace Wielandt inequality. Also given are relevant results involving Wishart matrices widely used in multivariate analysis, and especially a new alternative for the relative gain of the covariance adjusted estimator of a vector of parameters.

© 2008 Elsevier B.V. All rights reserved.

\textbf{1. Introduction}

It seems that the Wielandt inequality (WI) in the vector case was introduced by Bauer and Householder (1960) due to a private communication from Wielandt; see Drury et al. (2002, Section 2). Let A be a positive definite symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n > 0$, and let x and y be two nonnull real vectors satisfying $x^\prime y = 0$. Then

$$\frac{(x^\prime Ay)^2}{x^\prime Ax \cdot y^\prime Ay} \leq \frac{(\lambda_1 - \lambda_n)^2}{\lambda_1 + \lambda_n}. \quad (1.1)$$

We will refer to (1.1) as the "WI". The first appearance of (1.1) in a statistical context seems to be by Eaton (1976). Let the random vector h have the covariance matrix A; then the maximum of the squared correlation

$$\max_{x,y : x^\prime y = 0} \text{corr}^2(x, y) = \max_{x,y : x^\prime y = 0} \frac{(x^\prime Ay)^2}{x^\prime Ax \cdot y^\prime Ay} = \frac{(\lambda_1 - \lambda_n)^2}{\lambda_1 + \lambda_n}. \quad (1.2)$$

It is known that the WI can be viewed as a constrained version of the Cauchy–Schwarz inequality (CSI), which links with the Frucht–Kantorovich inequality (FKI) in a nice way. We remind the reader about the FKI which can be expressed as follows:

$$\frac{x^\prime Ax \cdot x^\prime A^{-1} x}{(x^\prime x)^2} \leq \frac{(\lambda_1 + \lambda_n)^2}{4 \lambda_1 \lambda_n}. \quad (1.3)$$

∗Corresponding author.
\textit{E-mail addresses:} shuangzhe.liu@canberra.edu.au (S. Liu), luchy@shfc.edu.cn (C. Lu), simo.puntanen@uta.fi (S. Puntanen).

0378-3758/$ - see front matter © 2008 Elsevier B.V. All rights reserved.